6.1.18 Kondensator treibt Motor

1 Motivation

Die in einem Kondensator gespeicherte Energie wird in potentielle Gravitationsenergie umgewandelt. Damit wird der Zusammenhang zwischen Ladespannung und gespeicherter Energie ermittelt.

2 Experiment

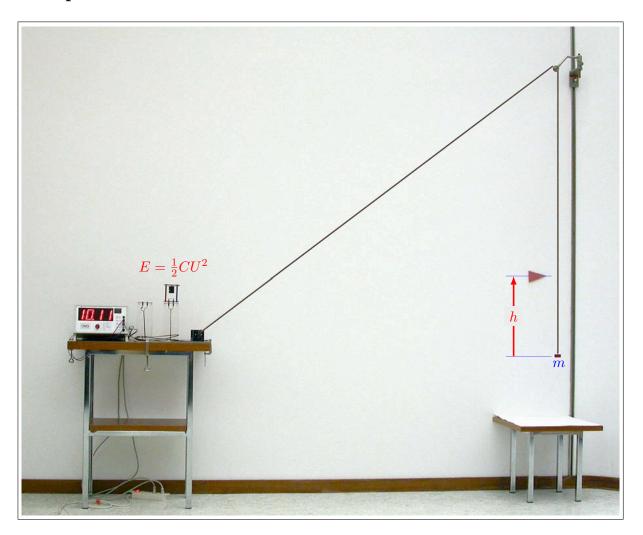


Abbildung 1: Kondensator treibt Motor

2.1 Messprinzip

Ein Elektrolytkondensator wird mit der Spannung U aufgeladen und anschliessend umgesteckt, so dass er einen kleinen Motor antreibt (siehe Abb. 2 und Abb. ??). Der Motor zieht über eine Umlenkrolle ein Gewicht nach oben. Man misst die Steighöhe h des Gewichts bei drei verschiedenen Spannungen im Verhältnis $1:\sqrt{2}:2$.

Abbildung 2: Kondensator mit den beiden Steckplätzen, Voltmeter und Motor.

2.2 Versuchsdurchführung

- a) Nullmarke des Gewichts an der Wand markieren.
- b) Kondensator mit $U_1=10\,\mathrm{V}$ aufladen, umstecken und damit Motor antreiben.
- c) 1. Höhenmarke setzen.
- d) Gewicht wieder auf Null setzen.
- e) Kondensator mit $U_2 = 14,1\,\mathrm{V}$ aufladen, umstecken und damit Motor antreiben.
- f) 2. Höhenmarke setzen.
- g) Gewicht wieder auf Null setzen.
- h) Kondensator mit $U_3 = 20 \,\mathrm{V}$ aufladen, umstecken und damit Motor antreiben.
- i) 3. Höhenmarke setzen.
- j) Mit Maßstab die Steighöhen ermitteln.

Die Steighöhen sollten sich wie $h_1:h_2:h_3=1:2:4$ verhalten $(h_3=1,9\,\mathrm{m}).$

2.3 Technische Details

Kondensator: $C = 10 \,\mathrm{mF}$; $U_{\mathrm{nenn}} = 40 \,\mathrm{V}$

Motor: Typ 1624E 012 S; 12 V; 1,5 W; n = 73%

Getriebe: Typ 16/3, Übersetzungsverhältnis 11,8:1; n = 80%

Masse: $m = 65 \,\mathrm{g}$

3 Theorie

Der Wirkungsgrad für die Umwandlung der elektrischen in mechanische Energie beträgt ca. $\eta = 60 \%$.

$$\frac{1}{2}CU^2 \cdot \eta = mgh \tag{1}$$

$$\frac{1}{2}CU^2 \cdot \eta = mgh \tag{1}$$

$$\Rightarrow h \sim U^2 \tag{2}$$